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ABSTRACT 
 

 

The TRX code is being developed at Los Alamos National Laboratory to 

modernize the development, execution, and interpretation of radiation-transport 

calculations that are executed using the MCNP6 code. As part of this 

development, a graphics-driven interface is being created to facilitate menu-

driven geometry creation using geometrical objects such as boxes, cylinders, and 

spheres. To aid the user and automate MCNP6 input deck preparation, 

algorithmic assessment of object proximity is needed. In this article, we present 

the algorithms that are being used in TRX for proximity detection. The algorithms 

are also designed to provide a prescription to reposition an object that is 

determined to collide with another object. With one exception, these deterministic 

algorithms are analytic expressions that are derived using trigonometry and 

analytic geometry. In the exceptional case, the method of Lagrange multipliers 

yields two bivariate quadratic expressions that must be solved numerically. The 

algorithms are designed to have millisecond performance. 
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1. INTRODUCTION 

 

     The TRX code is being created to enable model development and execution through a 

graphical user interface. As part of this effort, capability must be developed to permit the 

creation and placement of boxes (BOX), finite right cylinders (RCC), and spheres (SPH) in a 

region of space. Intelligence must be developed to check the proximity of these objects and 

determine whether these objects intersect, or collide, with each other. This determination impacts 

the treatment of objects by MCNP6 in terms of geometry plotting and particle transport.  

 

    Historically, the determination of object proximity has been made by the user during MCNP6 

input preparation. In addition, the MCNP6 geometry plotting feature can be used to inspect 

geometry. This feature utilizes a clever combinatorial geometry/Boolean algebra technique to 

assess geometrical relationships. The geometry plotting treatment used in MCNP6 (Durkee, 

2012) is not appropriate for TRX because it is designed to determine intersections of surfaces 

with each other and the plot plane and draw the resulting curves at a number of points sufficient 

to give curves that are visually pleasant. There is no information regarding object proximity 

other than that generated for a designated plot.  

 

     MCNP6 geometry can also be assessed using particle transport to detect flaws. This can be 

done in a pre-calculation mode by voiding the geometry and flooding the model with particles. 

Or, it will be done as particles are transported during a calculation with all materials present. The 

MCNP6 particle-transport treatment is not appropriate for TRX geometry assessment because it 

is used to determine whether a particle crosses a surface from one portion of the geometry to 
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another. Proximity assessment is thus done only at specific points as particles are transported. 

Portions of the geometry may not experience particle transport, so geometry may not be suitably 

assessed.  

 

     Neither of these MCNP6 geometry treatments is designed to identify object surface proximity 

as required by TRX. Consequently, we have developed proximity assessment algorithms for 

TRX. For purposes of implementation in TRX, two sets of algorithms are developed. Set 1 is 

used to determine whether two objects intersect when they are in their optimal configuration. 

Using MCNP6 terminology, this means assessing objects using their local-coordinate 

characterizations. This is the simplest, quickest way to assess whether an object fits inside 

another object. 

 

     Set 2 is used to determine whether two objects intersect when they are in their arbitrary 

location and orientation. Using MCNP6 terminology, this means assessing objects in their 

global-coordinate location and orientation. This is the more complicated treatment, and requires 

a number of expressions and procedures to assess surface intersections. 

 

     The algorithms to be developed must provide suitably characterized intersection assessment. 

We seek analytic, closed-form, deterministic algorithms that should execute with millisecond 

performance so as to be imperceptible to the user.  

 

     In the following section, expressions for optimal geometries are developed. Section 3 

addresses the derivations for objects with arbitrary location and orientation. Algorithms are 
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developed for BOX, RCC, and SPH macrobodies. We refer to these formulations as proximity-

detection schemes (PDSs). 

 

2. PROXIMITY DETERMINATION FOR OPTIMAL ORIENTATION 

 

     The Set 1 formulations are used to characterize whether an object fits inside of another object 

when both objects are in their optimal orientations. 

 

2.1. BOX in BOX 

 

    Consider BOX A to be defined by 6 planes parallel to the x–z, y–z, and x–y planes as 

illustrated in Fig. 1.  
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Figure 1.  Two boxes. 

Then 

 

1 1 2 2

1 1 2 2

1 1 2 2

,

,

,

A A A A

A A A A

A A A A

px x px x

py y py y

pz z pz z

 

 

 

. (1) 

 

Similarly, for BOX B 

 

 

1 1 2 2

1 1 2 2

1 1 2 2

,

,

,

B B B B

B B B B

B B B B

px x px x

py y py y

pz z pz z

 

 

 

. (2) 

 

x 

z 

y BOX A 2 1 1, ,A A Ax y z  2 2 1, ,A A Ax y z  

1 2 1, ,A A Ax y z  

1 2 2, ,A A Ax y z  
1 1 2, ,A A Ax y z  

2 2 1, ,A A Ax y z  
2 1 2, ,A A Ax y z  

1 1 1, ,A A Ax y z  

BOX B 2 1 1, ,B B Bx y z  2 2 1, ,B B Bx y z  

1 2 1, ,B B Bx y z  

1 2 2, ,B B Bx y z  

1 1 2, ,B B Bx y z  

2 2 1, ,B B Bx y z  
2 1 2, ,B B Bx y z  

1 1 1, ,B B Bx y z  
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For BOX A to fit inside of BOX B,  

 

 

1 1 2 2

1 1 2 2

1 1 2 2

and ,

and ,

and .

A B A B

A B A B

A B A B

px px px px

py py py py

pz pz pz pz

 

 

 

 (3) 

 

For BOX B to fit inside of BOX A,  

 

 

1 1 2 2

1 1 2 2

1 1 2 2

and ,

and ,

and .

A B A B

A B A B

A B A B

px px px px

py py py py

pz pz pz pz

 

 

 

 (4) 

 

 

2.2. BOX in RCC 

 

     The expressions for the BOX Are given in Eq.(1). If the RCC is taken to be centered on the x-

axis, then 

 2 2 2

By z R  . (5) 

 

In order that the BOX fit inside the RCC, it is required that  

 
1 1 2 2

1 2 3 4

and ,

and and and

A B A B

B B B B

px px px px

R R R R R R R R

 

   
 (6) 

where the radii 1 2 3, , ,R R R and 4R are defined as 

 

 

 

 

 

 

1/2
2 2

1 2 2

1/2
2 2

2 1 2

1/2
2 2

3 2 1

1/2
2 2

4 2 1

,

,

,

.

A A

A A

A A

A A

R y z

R y z

R y z

R y z

 

 

 

 

 (7) 

Figure 2 shows a cross section of the BOX and RCC. 
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Figure 2.  BOX in RCC. 

 

2.3. RCC in BOX 

The equations of RCC A centered on the x-axis is  

 2 2 2

Ay z R  , (8) 

while the equation for BOX B is given by Eq.(2).  In order that the RCC fit inside the BOX, it is 

required that  

 
1 1 2 2

1 2 1 2

and ,

and and and

A B A B

A B A B A B A BB

px px px px

R y R y R z R z

 

   
 (9) 

Figure 3 shows a cross section of the BOX and RCC. 
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Figure 3.  RCC in BOX. 

 

2.4. BOX in SPH 

 

     This formulation is similar to the BOX in RCC discussed in Section 2.2 and illustrated in Fig. 

2. The equations defining BOX A are given in Eq.(1). The equation of SPH B centered at the 

origin is 

 2 2 2 2

Bx y z R   . (10) 

 

In order that the BOX fit inside the SPH, it is necessary that 

  

 and ,Axz B Ayz BR R R R   (11) 

where 

 
 

 

1/2
2 2

1 1

1/2
2 2

1 1

Axz A A

Ayz A A

R x z

R y z

 

 

. (12) 
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2 2,B By z  1 2,B By z  

1 1,B By z  
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2.5. SPH in BOX 

     The formulations resemble those for an RCC in a BOX discussed in Section 2.3 and 

illustrated in Fig. 3. The equations defining BOX B are given in Eq.(2). The equation of SPH A 

centered at the origin is 

 2 2 2 2

Ax y z R   . (13) 

In order that the SPH fit inside the BOX, the conditions  

 1 2 1 2and and andA B A B A B A BB
R y R y R z R z     (14) 

must be satisfied. 

 

2.6. RCC in RCC 

      

     The equations of RCCs A and B are given in Eqs.(8) and (5), respectively. The conditions 

needed so that RCC A fits in RCC B are 

 1 1 2 2and andA B A B A Bpx px px px R R   . (15) 

 

2.7. RCC in SPH 

      

          The equations of RCC A and sphere B are given in Eqs.(8) and (10), respectively. The 

conditions required for RCC A to fit in SPH B are 

 1 2and andA B A AR R R R R R    (16) 

 

 

2.8. SPH in RCC 

      

               The equations of SPH A and RCC B are given in Eqs.(13) and (5), respectively. The 

conditions so that SPH A fits in RCC B are 
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 1 2and andA B A B A BR R R x R x   . (17) 

 

 

2.9. SPH in SPH 

      

     This PDS is the simplest for the objects under consideration. The equations of SPH A and 

SPH B are given in Eqs.(13) and (10), respectively. The condition so that SPH A fits in RCC B is 

 A BR R . (18) 

 

 

3. PROXIMITY DETERMINATION FOR OBJECTS WITH ARBITRARY LOCATION 
AND ORIENTATION 

 

     The formulations for Set 2 are developed to ascertain the proximity of two objects having 

arbitrary location and orientation. These formulations determine the intersection, if any, of a 

three-dimensional (3-D) surface with another 3-D surface. These PDSs are much lengthier and 

more complicated than those for Set 1. Nevertheless, the PDSs are straightforward applications 

of trigonometry and analytic geometry. In one instance, the PDS uses the method of Lagrange 

multipliers. To better convey the concepts, each PDS is presented using itemized descriptions 

followed by development of the requisite equations. 

 

3.1. BOX and BOX 

      

          Proximity determination for two boxes is made using the planes and lines along each edge 

of the boxes. In essence, the intersection of each of the 12 lines along the edges of BOX B with 

each of the 6 planes defining BOX A is determined. The planes defining the surfaces of BOX A 
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are infinite in extent. Checks are then made to determine whether each point of intersection lies 

within the extent of BOX A. Figure 4 illustrates a box colliding with another box.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Collision of two boxes. 

 

Each BOX has 6 sides and 12 lines along its edges. These characteristics are used to devise the 

PDS for two boxes is: 

1. Determine the equation of the plane for each side of BOX A. 

2. Determine the equation of the line along each edge of BOX B. 

3. Attempt to determine the POI of each plane of BOX A with each line of BOX B. 

4. For each POI, determine whether the POI for the plane lies within the BOX A portion of 

the plane. 
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y 
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xb8,yb8,zb8 

xb1,yb1,zb1 

xb4,yb4,zb4 

xb3,yb3,zb3 

xa1,ya1,za1 

xb2,yb2,zb2 

xa7,ya7,za7 
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     The equation of the planes Ai on each of the six sides i of BOX A can be specified in terms 

of the dot product of the normal vector N

iA  to the plane and a vector in the plane as shown in 

Fig. 5 (Tierney, 1974). The vector in the plane can be defined using the point ( , , )P x y z in the 

plane and the point ( , , )Ai Ai Ai AiP x y z  at a vertex point in plane i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Vector specification of plane Ai  for BOX A. 

So 

  : 0, 1, 6N

Ai i AiA P P i     , (19) 

where 

 

 ˆˆ ˆP xi yj zk   , (20) 

and 

 ˆˆ ˆ
Ai Ai Ai AiP x i y j z k   . (21) 

 

Expanding Eqs.(19)–(21) and rearranging, 

x 

z 

y 

BOX A 

AiP  

P  

AiP P  

A  

Ai  N

iA  

1

F

iA  

2

F

iA  
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 N N N N

Ai Ai Ai Aia x b y c z d   , (22) 

where 

 N N N N

Ai Ai Ai Ai Ai Ai Aid a x b y c z   . (23) 

 

     The normal N

iA  is determined using the cross product of two vectors 
1

F

iA and 
2

F

iA  on face i of 

BOX A, where  

 1 1 1 1
ˆˆ ˆF F F F

i i i iA a i b j c k   , (24) 

and 

 2 2 2 2
ˆˆ ˆF F F F

i i i iA a i b j c k   . (25) 

 

The coefficients of these vectors are selected using points located at three vertices on each planar 

side of BOX A. Using the designations in Fig. 1, the coefficients for 1

F

iA  are defined as 

 

21 4 1 11 4 1 11 4 1

22 8 5 12 8 5 12 8 5

23 4 1 13 4 1 13 4 1

24 3 2 14 3 2 14 3 2

25 5 1 15 5 1 15 5 1

26 8

, ,

, ,

, ,

, ,

, ,

F F F

A A A A A A

F F F

A A A A A A

F F F

A A A A A A

F F F

A A A A A A

F F F

A A A A A A

F

A

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x

     

     

     

     

     

  4 16 8 4 16 8 4, ,F F

A A A A Ab y y c z z   

, (26) 

and for 2

F

iA are 

 

 

11 2 1 11 2 1 11 2 1

12 6 5 12 6 5 12 6 5

13 5 1 13 5 1 13 5 1

14 6 2 14 6 2 14 6 2

15 2 1 15 2 1 15 2 1

16 3

, ,

, ,

, ,

, ,

, ,

F F F

A A A A A A

F F F

A A A A A A

F F F

A A A A A A

F F F

A A A A A A

F F F

A A A A A A

F

A

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x

     

     

     

     

     

  4 16 3 4 16 3 4, ,F F

A A A A Ab y y c z z   

. (27) 

 

The normal vector to plane Ai is given by 

 1 2
ˆˆ ˆN F F N N N

i i i Ai Ai AiA A A a i b j c k     , (28) 
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where 

 

1 2 1 2

1 1 1 2

1 2 2 2

N F F F F

Ai i i i i

N F F F F

Ai i i i i

N F F F F

Ai i i i i

a b c c b

b c a a c

c a b b a

 

 

 

. (29) 

 

     For Step 2, the equation of the line along each edge of BOX B is determined by considering 

the equation of the line ( )E

BjL t along each of the 12 edges of BOX B as given by 

 

( ) :

, 1, ,12

E E

Bj Bj Bj

E

Bj Bj

E

Bj Bj

L t x x a t

y y b t j

z z c t

 

  

 

. (30) 

 

The point ( , , )Bj Bj Bjx y z  is a vertex through which ( )E

BjL t  passes. The quantities E

Bja , E

Bjb , and E

Bjc  

are the coefficients of the vector E

jB along the edges of BOX B as given by 

 ˆˆ ˆE E E E

j Bj Bj BjB a i b j c k   , (31) 

and 
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4 1 4 4 1 4 4 1 4

5 6 5 5 6 5 5 6 5

6 7

, ,

, ,

, ,

, ,

, ,
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E E E
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 (32) 
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     Step 3 is addressed by attempting to determine the POI of the surface of BOX A with each 

line of BOX B. The POI for each line ( )E

BjL t with each plane of BOX A is determined. Each line 

will intersect the planes of BOX A unless the line and plane are parallel. The intersections are 

determined by inserting Eq.(30) into Eq.(22) and solving for the value of the parameter t  for the 

intersection of each plane Ai  and each line ( )E

BjL t so that 

 
 N N N N

Ai Ai Bj Ai Bj Ai Bj

ij N N N

Ai Bj Ai Bj Ai Bj

d a x b y c z
t

a a b b c c

  


 
. (33) 

The POIs are 

 ( ), ( ), ( )Aij ij ij ijPOI x t y t z t    . (34) 

 

     Finally, for Step 4 each POI a determination is made as to whether the POI for the plane lies 

within the BOX A portion of the plane. The concept is illustrated in Fig. 6.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Intersection of a line from BOX B with a plane of BOX A. 

x 

z 

y 

1

E

AL  

1AijL  

E

BjL  

( )A ijPOI t  

31( )ijP t  

12( )ijP t  

22( )ijP t  

41( )ijP t  

3

E

AL  

2

E

AL  

4

E

AL  

2AijL  



  

                                                                      19 

 

The intersection check is done by first constructing two lines are constructed that contain 

( )Aij A ijPOI POI t  and are oriented so that they are perpendicular to the ends of the box through 

which they pass. The equation of the line ( )E

AkL t along each of the 12 edges of BOX A is 

 

( ) :

, 1, ,12

E E

Ak Ak Ak

E

Ak Ak

E

Ak Ak

L t x x a t

y y b t k

z z c t

 

  

 

. (35) 

 

The point ( , , )Ak Ak Akx y z  is a vertex through which ( )E

AkL t  passes. The quantities E

Aka , E

Akb , and 

E

Akc  are the coefficients of the vector E

kA along the edges of BOX A as given by 

 ˆˆ ˆE E E E

k Ak Ak AkA a i b j c k   , (36) 

and 

 

1 2 1 1 2 1 1 2 1

2 3 2 2 3 2 2 3 2

3 4 3 3 4 3 3 4 3

4 1 4 4 1 4 4 1 4

5 6 5 5 6 5 5 6 5

6 7

, ,

, ,

, ,

, ,

, ,

E E E

A A A A A A A A A

E E E

A A A A A A A A A

E E E

A A A A A A A A A

E E E

A A A A A A A A A

E E E

A A A A A A A A A

E

A A

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x

     

     

     

     

     

  6 6 7 6 6 7 6

7 8 7 7 8 7 7 8 7

8 5 8 8 5 8 8 5 8

9 5 1 9 5 1 9 5 1

10 6 2 10 6 2 10 6 2

11 7 3 1

, ,

, ,

, ,

, ,

, ,

,

E E

A A A A A A A

E E E

A A A A A A A A A

E E E

A A A A A A A A A

E E E

A A A A A A A A A

E E E

A A A A A A A A A

E

A A A A

b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b y y c z z

a x x b

   

     

     

     

     

  1 7 3 11 7 3

12 8 4 12 8 4 12 8 4

,

, ,

E E

A A A A A

E E E

A A A A A A A A A

y y c z z

a x x b y y c z z

   

     

 (37) 

 

The lines ( )
Aijk

L t through AijPOI  are 
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( ) : ( )

( ) , 1, ,6; 1, ,12; 1, ,12;

( )

E E

ijAijk Ak

E

ij Ak

E

ij Ak

L t x x t a u

y y t b u i j k k k

z z t c u

 

     

 

. (38) 

 

The intersection of the lines ( )E

AkL t and ( )
Aijk

L t are next determined. Equations (35) and (38) 

contain 6 equations and 5 unknowns x, y, z, t, and u. Therefore, a unique solution can be obtained 

using any 4 of the equations. Selecting the equations in x and y and solving gives 

 
( ) ( )E E

ij Ak ijAk Ak

E E Eijkk

Ak AkAk

b x t y a y t
t

a a b

   


, (39) 

and 

 
( )E

Ak Ak ijijkk

Eijkk

Ak

y b t y t
u

b

 
 , (40) 

for BOX A sides 1, ,6,i  BOX B lines 1, ,12,j  BOX A lines through AijPOI 1, ,12,k   

and lines 1, ,12k  along the sides of BOX A. The intersection conditions for these lines are 

 
1

1

,"forwards"

,"backwards"

ijijkk ijk k

ijijkk ijk k

t t t

t t t





 

 
. (41) 

 

3.2. BOX and RCC 

     The BOX-RCC PDS analysis consists of two checks. The PDS for BOX B colliding with 

RCC A is: 

 

1. First, intersections between the BOX and cylindrical portion of the RCC are determined.  

2. Second, intersections between the BOX and the planes at the ends of the RCC are 

determined.  
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Figure 7 illustrates a box colliding with a cylinder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Collision of a box with a cylinder. 

 

     Determination of the intersection of BOX B with the cylindrical surface of RCC A is made by 

first considering the equation of the cylinder. The equation of a general cylinder can be written 

as (Brown, 2003).  

 2 2 2 0Ax By Cz Dxy Eyz Fzx Gx Hy Jz K          . (42) 

 

We write  Eq.(42) for cylinder A as  

 2 2 2 0A A A A A A A AA x B y C z D xy E yz F zx G x H y J z K          , (43) 
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To determine the POIs, the equation of a line along each edge of BOX B in Eq.(30) is inserted 

into Eq.(43). The resulting quadratic expression in t is then solved to give the two values :1,2jt  for 

the POIs for each line j and the cylinder as 

 

2

:1,2

4

2

j j j j

j

j

b b a c
t

a

  
 , (44) 

 

where 

 

 

     

   

 

2 2 2

2 2 2

2 2 2

E E E E E E E E E

j A Bj A Bj A Bj A Bj Bj A Bj Bj A Bj Bj

E E E E E E E

j A Bj Bj A Bj Bj A Bj Bj A Bj Bj Bj Bj A Bj Bj Bj Bj

E E E E E

A Bj Bj Bj Bj A Bj A Bj A Bj

j A Bj A Bj A Bj A B

a A a B b C c D a b E b c F c a

b A x a B y b C z c D x b y a E y c z b

F z a x c G a H b J c

c A x B y C z D x

     

      

    

    j Bj A Bj Bj A Bj Bj A Bj A Bj A Bj Ay E y z F z x G x H y J z K     

.(45) 

 

 

If :1,2jt  is real, then line j the intersects with the sphere at the locations 

 :1,2 :1,2 :1,2 :1,2 :1,2( ) ( ), ( ), ( )Aj A j j j jPOI POI t x t y t z t  . (46) 

 

If :1,2jt  is not real, then no intersection between line j and the cylinder occurs. 

 

     If no intersection between RCC A and BOX B is determined, the an assessment is made to 

determine whether BOX B intersects either of the planes at the ends of RCC A inside of the 

circle defined by the intersection of the cylinder and plane. The determination of the 

( )Aij A ijPOI POI t is done using the procedure presented above in Eqs.(19)–(34). Here, there are 

2 planes, 1,2,i   to consider for RCC A and 16 lines, 1, 16,j   to consider for BOX B.  
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     A check whether AijPOI lies inside the cylinder must be made. This is done by calculating the 

distance ijd  between each AijPOI  and the center of the circle , ,Ai Ai Aix y z in planes Ai  as 

illustrated in Fig. 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  BOX B intersecting plane 2A  at the upper end of RCC A. 
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The distance measure is  

  
1/2

2 2 2

( ) ( ) ( )ij ij Ai ij Ai ij Aid x t x y t y z t z                . (47) 

 

The intersection assessment is 

 
: for either i andany jthen box intersects planeinsidecylinder

: for both iandall j then box does not intersect planeinsidecylinder

ij A

ij A

d R

d R




 (48) 

      

3.3.  BOX and SPH 

 

     The PDS for a box with a sphere is treated using a single determination: 

1. Calculate the intersection of the lines on the edges of BOX B with sphere A. 

Figure 9 illustrates a box colliding with a sphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Collision of a box with a sphere. 
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     The PDS formulation uses the equation of SPH A of radius AR  centered at  , ,A A Ax y z as 

given by 

      
2 2 2 2

A A A Ax x y y z z R      . (49) 

 

The intersection procedure uses Eq.(30) for the equations of the lines along the edges of BOX B. 

Solving Eqs.(30) and (49) simultaneously gives the two values of the parameter t at the POIs for 

line j and the sphere as 

 

2

:1,2

4

2

j j j j

j

j

b b a c
t

a

  
 , (50) 

 

where 

 

  

2 2 2

1 1 1

2 2 2 2

1 1 1

2

j j j j

j j j j j j j

j j j j A

a a b c

b a x b y c z

c x y z R

  

  

   

, (51) 

 

and 

 

 

1

1

1

j Bj A

j Bj A

j Bj A

x x x

y y y

z z z

 

 

 

. (52) 

 

If :1,2jt  is real, then line j intersects the sphere. Otherwise, line j does not intersect the sphere. 

     

3.4.  RCC and RCC 

      We now consider the collision of two RCCs. The RCCs are cylinders of finite length, 

consisting of a cylinder and planes at either end whose orientation is perpendicular to the 

cylinder. The formulations must account for the finite extent of the cylinders. Figure 10 
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illustrates an RCC colliding with another RCC.  At times in the following discussion we refer to 

RCCs as cylinders with the understanding that cylinders of finite length are being treated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Collision of two RCCs. 

 

     The BOX-BOX PDS is not applicable to the collision involving two cylinders because the 

cylinders do not have a finite number of edges. An RCC-RCC PDS is:      

 

1. Determine vectors A and B parallel to the axes of cylinders A and B. This implies moving 

the tip of B to the tip of A . 

2. Calculate the cross product of A and B to obtain an orthogonal vector C . 

3. Calculate the equation of the plane through the center of cylinder A with an orientation so 

that C  lies in the plane. 
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4. Calculate the equation of the plane through the center of cylinder B with an orientation so 

that C  lies in the plane. 

5. Calculate the parametric equations of the line IL  that is parallel to C  and is through the 

intersection of the two planes. 

6. Simultaneously solve the equations for cylinder A and line IL  for the two points-of-

intersection POIA1 and POIA2. 

7. Check whether either the points of intersection POIA1 or POIA2 for cylinder A is in 

cylinder B. 

8. Because the cylindrical surfaces are infinite in extent, when two cylinders are found to 

intersect a determination must be made as to whether the intersection occurs between the 

ends of the RCCs. 

9. If the RCCs are not found to intersect along their cylindrical surfaces, then consideration 

must be give to the situation where the ends of the RCCs may intersect. 

 

     The analysis will consider (1) the intersection of the cylindrical surfaces and (2) the 

intersection of one RCC with the plane at the end of the other RCC. 

 

     We begin with Eq.(43) for cylinder A,  

 2 2 2 0A A A A A A A AA x B y C z D xy E yz F zx G x H y J z K          , (53) 

 

and write a similar expression for cylinder B as 

 2 2 2 0B B B B B B B B B BA x B y C z D xy E yz F zx G x H y J z K          , (54) 
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where coefficient subscripts A and B refer cylinders A and B, respectively. Vectors A  and 

B parallel to the axes of cylinders A and B are first determined, where 

 ˆˆ ˆ
A A AA a i b j c k   , (55) 

and  

 ˆˆ ˆ ˆ
B B BB a i b j c k   . (56) 

 

The Cartesian coordinate vector coefficients are written using the points at the center of each end 

of the RCC so that 

  

 

2 1

2 1

2 1

A A A

A A A

A A A

a x x

b y y

c z z

 

 

 

, (57) 

and 

 

 

2 1

2 1

2 1

B B B

B B B

B B B

a x x

b y y

c z z

 

 

 

. (58) 

 

Next, the cross product C of A and B is calculated as 

 ˆˆ ˆ
C C CC A B a i b j c k     , (59) 

where 

 

C A B A B

C A B A B

C A B A B

a b c c b

b c a a c

c a b b a

 

 

 

. (60) 

 

The vector C is perpendicular to A and B and, therefore, a plane containing cylinders A and B if 

the centerlines of these cylinders intersected. That the centerlines do not typically intersect is not 

important. The direction of C  is important, as we see next. 

 



  

                                                                      29 

 

     For Step 3, the equation of the plane through the center of cylinder A with an orientation so 

that C  lies in the plane is determined. The normal to this plane AN  is given by 

 ˆˆ ˆ
A NA NA NAN A C a i b j c k     , (61) 

where 

 

NA A C A C

NA A C A C

NA A C A C

a b c c b

b c a a c

c a b b a

 

 

 

. (62) 

 

The equation of the plane is given by the dot product of AN and a vector in the plane from the 

point  1 1 1, ,A A A AP x y z at the base of A  and another point  , ,P x y z in the plane so that 

 

   0.A AN P P    (63) 

Expanding and rearranging,  

 

 NA NA NA NAa x b y c z d   , (64) 

where 

 1 1 1NA NA A NA A NA Ad a x b y c z   . (65) 

 

 

     In Step 4 the foregoing procedure executed to calculate the equation of the plane through the 

center of cylinder B with an orientation so that C  lies in the plane. The normal to this plane BN  

is given by 

 ˆˆ ˆ
B NB NB NBN B C a i b j c k     , (66) 

where 

 

NB B C B C

NB B C B C

NB B C B C

a b c c b

b c a a c

c a b b a

 

 

 

. (67) 
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The equation of the plane is given by the dot product of BN and a vector in the plane from the 

point  1 1 1, ,B B B BP x y z at the base of B  and another point  , ,P x y z in the plane so that 

 

   0.B BN P P    (68) 

Expanding and rearranging,  

 

 NB NB NB NBa x b y c z d   , (69) 

where 

 1 1 1NB NB B NB B NB Bd a x b y c z   . (70) 

 

 

     In Step 5 the parametric equations of the line IL  that is parallel to C  and is through the 

intersection of the two planes are determined. These parametric equations are (Tierney, p 438) 

 

( ) :I I C

I C

I C

L t x x a t

y y b t

z z c t

 

 

 

 (71) 

 

Line IL  is normal to and passes through the centers of cylinders A and B. 

 

     The intersection point ( , , )I I Ix y z  is determined by stipulating either x, y, or z and substituting 

into the two plane equations Eq.(64) and (69). This gives two equations of lines, the 

simultaneous solution of which gives a point. When either of the cylinders is oriented so that its 

axis is not parallel to any coordinate axis, then either x, y, or z can be stipulated. We arbitrarily 

select  

 Iz z , (72) 

 

 so that Eqs.(64) and (69) become 
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 NA NA NA I NAa x b y c z d   , (73) 

and 

 NB NB NB I NBa x b y c z d   . (74) 

 

The simultaneous solution of Eqs.(73) and (74) gives 

 
   NB NA NA I NA NB NB I

I

NA NB NA NB

b d c z b d c z
x

a b b a

  



, (75) 

and 

 NB NB I NB I
I

NB

d c z a x
y

b

 
 . (76) 

 

     When each of the cylinders is parallel to a coordinate axis, the line IL  parallel to C is parallel 

to a coordinate axis. The stipulation of x, y, or z and subsequent substitution into the two plane 

equations Eq.(64) and (69) is made according to whether C is parallel to the x-, y-, or z-axis. For 

these cases, Ix  is stipulated and ,I Iy z  are solved for, Iy  is stipulated and ,I Ix z are solved for, or 

Iz  is stipulated and ,I Ix y are solved for as in Eqs.(75) and (76), respectively. The stipulated 

values of ,I Ix y  or Iz  are arbitrary. 

 

     Step 6 concerns the simultaneous solution of the equations for the surface cylinder A and the 

line IL  for the two points-of-intersections POIA1 and POIA2. This is done by inserting the 

expressions in Eq.(71) into Eq.(53) so that 

 
2 0qA qA qAa t b t c   , (77) 

where 
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   

 

2 2 2

2 2

2 2

2

qA C A C A C A c c A C C A C C A

qA C A C A C A I C A C A C A I

C A C A C A I C A C A C A

qA A I A A I A I I A I I A I I

A I A I A I A

a a A b B c C a b D b c E a c F

b a A b D c F x b B a D c E y

c C b E a F z a G b H c J

c A x B xy C z D x y E y z F x z

G x H y J z K

     

     

     

     

   

. (78) 

 

The quadratic expression in t given in Eq.(77) is solved for the two values 1At  and 2At , 

 

2 2

1 1

4 4
,

2 2

qA qA qA qA qA qA qA qA

A A

qA qA

b b a c b b a c
t t

a a

     
  . (79) 

 

The values 1At  and 2At  are the values of t for which IL  intersects cylinder A. Substitution of 1At  

and 2At into Eq.(71) gives the two POIs 1 1 1( , , )A A Ax y z and 2 2 2( , , )A A Ax y z on cylinder A,  

 

1 0 1

1 0 1

1 0 1

A A

A A

A A

x x at

y y bt

z z ct

 

 

 

, (80) 

and  

 

2 0 2

2 0 2

2 0 2

A A

A A

A A

x x at

y y bt

z z ct

 

 

 

. (81) 

 

     The process is repeated for cylinder B whereby insertion of the expressions in Eq.(71) into 

Eq.(54) gives 

 
2 0qB qB qBa t b t c   , (82) 

where 

 

   

 

2 2 2

2 2

2 2

2

qB C B C B C B C C B C C B C C B

qB C B C B C B I C B C B C B I

C B C B C B I C B C B C B

qB B I B B I B I I B I I B I I

B I B I B I B

a a A b B c C a b D b c E a c F

b a A b D c F x b B a D c E y

c C b E a F z a G b H c J

c A x B xy C z D x y E y z F x z

G x H y J z K

     

     

     

     

   

. (83) 
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The quadratic expression in t given in Eq.(77) is solved for the two values 
1Bt  and 

1Bt  to give 

 

2 2

1 1

4 4
,

2 2

qB qB qB qB qB qB qB qB

B B

qB qB

b b a c b b a c
t t

a a

     
  . (84) 

 

The values 
1Bt  and 

1Bt  are the values of t for which
IL  intersects cylinder B. Substitution of 

1Bt  

and 
1Bt  into Eq.(71) gives the two POIs 

1 1 1( , , )B B Bx y z and 
2 2 2( , , )B B Bx y z for cylinder B,  

 

1 0 1

1 0 1

1 0 1

B B

B B

B B

x x at

y y bt

z z ct

 

 

 

, (85) 

and  

 

2 0 2

2 0 2

2 0 2

B B

B B

B B

x x at

y y bt

z z ct

 

 

 

. (86) 

 

 

     In Step 8 a check is made to determine whether either the points of intersection POIA1 or 

POIA2 for cylinder A is in cylinder B. To do so, an assessment of the relative values of the 

parameter t is made. Consider Fig. 11. 
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Figure 11.  Two non-intersecting cylinders. 

 

Cylinders A and B do not intersect when the following conditions are met: 

 
1 1 2 1

1 2 2 2

, ;

, .

A B A B

A B A B

t t t t

t t t t

 

 
 (87) 

 

Cylinders A and B intersect when some combination of parameters exists such that a parameter 

for cylinder B is less than a parameter of cylinder A, e.g.,  

 1 1 2 2A B B At t t t   . (88) 

 

     In Step 8 we note that because the cylindrical surfaces are infinite in extent, when two 

cylinders are found to intersect a determination must be made as to whether the intersection 

x 

z 

y 

Cylinder B 
Cylinder A 

B  A  

( 0)IL t   

( )IL t  

1( )I AL t  
2( )I AL t  

1( )I BL t  2( )I BL t  
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occurs between the ends of the RCCs. The parameter values 1 2 1 2, , ,A A B Bt t t t  for the POIs created 

by the line IL  through radial center of cylinders A and B and the axis vectors A  and B are 

known. Consequently, parametric equations of lines through these POIs in the directions of A  

and B can be written. The intersection of these lines with the planes at the ends of the cylinders 

can be calculated. An assessment as to whether the POIs are between the ends of the cylinders 

can then be made by consideration of the parameters for the lines.  

 

The procedure is illustrated in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Determination whether POIA1 lies between the ends of RCCs A and B. 

     Consider the parameteric equations of the line 1( )AL t through POIA1 in the direction of A ,  

 

 

 

 

1 1

1

1

( ) :A A A

A A

A A

L t x x t a t

y y t b t

z z t c t

 

 

 

. (89) 

 

x 

z 

y Cylinder B 

Cylinder A 

B  

A  

1 1 1, ,A A Ax y z  

2 2 2, ,A A Ax y z  

1 1 1, ,B B Bx y z  

2 2 2, ,B B Bx y z  

1( )AL t  POIA1 

1A

 

1AP  

P  
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The equation of the plane 1A  defining the end of RCC A through 1 1 1( , , )A A Ax y z with normal A  is  

  1 1: 0A AA P P    , (90) 

where 

 

 ˆˆ ˆP xi yj zk   , (91) 

and 

 1 1 1 1
ˆˆ ˆ

A A A AP x i y j z k   . (92) 

 

Expanding and rearranging, 

 

 1A A A Aa x b y c z d   , (93) 

where 

 1 1 1 1A A A A A A Ad a x b y c z   . (94) 

 

Now solve Eqs.(89) and (93) simultaneously so that 

 

 
     1 1 1 1

1 1 2 2 2

A A A A A A A

A A

A A A

d a x t b y t c z t
t t

a b c

     
 

. (95) 

 

At the other plane for cylinder A, the equation of the plane through 2 2 2( , , )A A Ax y z with normal A  

is that 

 

  2 0AA P P   , (96) 

where 

 

 ˆˆ ˆP xi yj zk   , (97) 

and 

 2 2 2 2
ˆˆ ˆ

A A A AP x i y j z k   . (98) 

Expanding and rearranging, 

 

 2A A A Aa x b y c z d   , (99) 

where 

 2 2 2 2A A A A A A Ad a x b y c z   . (100) 

 

Now solve Eqs.(89) and (99) simultaneously to obtain 
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     2 1 1 1

1 2 2 2 2

A A A A A A A

A A

A A A

d a x t b y t c z t
t t

a b c

     
 

. (101) 

 

 

The condition that POIA1 lies between the ends of RCC A is 

 

 

 
1 1 1 1 2A A A A At t t  . (102) 

 

If this condition is satisified, then the two RCCs intersect. If it is not satisfied, then the procedure 

is repeated for POIA2. 

 

     For POIA2, the parameteric equations of the line 2 ( )AL t through POIA2 in the direction of A  

are 

 

 

 

 

2 2

2

2

( ) :A A A

A A

A A

L t x x t a t

y y t b t

z z t c t

 

 

 

. (103) 

 

The simultaneous solution of Eqs.(93) and (103) gives 

 

 
     1 2 2 2

2 1 2 2 2

A A A A A A A

A A

A A A

d a x t b y t c z t
t t

a b c

     
 

. (104) 

 

The simultaneous solution of Eqs.(99) and (103) gives 

 

 

 
     2 2 2 2

2 2 2 2 2

A A A A A A A

A A

A A A

d a x t b y t c z t
t t

a b c

     
 

. (105) 

 

The condition that POIA2 lies between the ends of RCC A is 

 

 

 2 1 2 2 2A A A A At t t  . (106) 
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If this condition is satisified, then the two RCCs intersect. If it is not satisfied, then the 

cylindrical sides of RCCs A and B do not intersect. If a non-intersection finding is made, then a 

check must be made to determine whether the ends of the RCCs intersect.  

 

     Step 9 considers the situation where the ends of the RCCs intersect. Four cases of 

intersections are possible: (1) top of RCC A and top of RCC B, (2) top of RCC A and bottom of 

RCC B, (3) bottom of RCC A and top of RCC B, and (4) bottom of RCC A and bottom of RCC 

B. Fig. 13 illustrates the case where RCC B penetrates the top planar surface of RCC A without 

intersecting the wall of RCC A.  
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Figure 13.  RCC B intersecting the top end of RCC A. 
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     This assessments begins by calculating the equation of the plane AB  through A  and B , 

vectors through 
1 1 1( , , )A A Ax y z and 

2 2 2( , , )A A Ax y z , respectively, and parallel to the axes of the 

cylinders.  This equation is given in terms of dot product of the normal C  to the plane, given by 

the cross product of A  and B , and a vector in the plane. The vector in AB  is written in terms of 

a point ( , , )P x y z and any point along A , so the point 1 1 1 1( , , )A A A AP x y z is selected. Then 

 

  1: 0AB AC P P    , (107) 

or 

 C C C Ca x b y c z d   , (108) 

with 

 1 1 1C C A C A C Ad a x b y c z   . (109) 

 

     Next, the plane 1B  on the bottom of RCC B is  

  1 1: 0B BB P P    , (110) 

so that  

 1B B B Ba x b y c z d   , (111) 

with 

 1 1 1 1B B B B B B Bd a x b y c z   . (112) 

 

     The intersection of planes AB and 1B  is a line. The parametric equations of this line, 1BL , are 

specified using a point on this line which is conveniently selected to be the point at the base and 

on the axis of RCC B,  1 1 1 1( , , )B B B BP x y z . The direction of line 1BL is perpendicular to the normals 

to AB and 1B . So, 

 ˆˆ ˆ
B LB LB LBL B C a i b j c k     , (113) 
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where 

 

LB B C B C

LB B C B C

LB B C B C

a b c c b

b c a a c

c a b b a

 

 

 

. (114) 

 

The parametric equations for the line 
1( )BL t are 

 

1 1

1

1

( ) :B B LB

B LB

B LB

L t x x a t

y y b t

z z c t

 

 

 

. (115) 

  

    A calculation is now made for the two POIs at the intersection of 1( )BL t and RCC B, POIB1T 

(for “top”) and POIB1B (for “bottom”). The designators “top” and “bottom” are used for 

convenience – in essence, two values are calculated. Substituting the expressions in Eq.(115) into 

Eq.(53) gives the quadratic 

 2

1 1 1 0qLB qLB qLBa t b t c   , (116) 

 

with the coefficients 

 

   

 

2 2 2

1

1 1 1

1

2 2

1 1 1 1 1 1 1 1 1

1

2 2

2

qLB LB B LB B LB B LB LB B LB LB B LB LB B

qLB LB B LB B LB B B LB B LB B LB B B

LB B LB B LB B B LB B LB B LB B

qLB B B B B B B B B B B B B B B

B B

a a A b B c C a b D b c E a c F

b a A b D c F x b B a D c E y

c C b E a F z a G b H c J

c A x B xy C z D x y E y z F x z

G x

     

     

     

     

  1 1B B B B BH y J z K 

. (117) 

 

The quadratic expression in t given in Eq.(116) is solved for the two values 1 1LBt  and 1 2LBt  , 

 

2 2

1 1 1 1 1 1 1 1

1 1 1 2

1 1

4 4
,

2 2

qLB qLB qLB qLB qLB qLB qLB qLB

LB LB

qLB qLB

b b a c b b a c
t t

a a
 

     
  . (118) 
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The parametric equation of the lines through POIB1T and POIB1B in the direction B are then given 

by  

 

1 1 1

1 1

1 1

( ) :B T LB B

LB B

LB B

L t x x a t

y y b t

z z c t







 

 

 

 (119) 

and 

 

1 1 2

1 2

1 2

( ) :B B LB B

LB B

LB B

L t x x a t

y y b t

z z c t







 

 

 

. (120) 

 

     The parametric equations of the lines in Eqs.(119) and (120) are solved simultaneously with 

the equations of planes 1A  and 2A through the bottom and top of RCC A. For 1A , using 

Eqs.(90)–(94) and Eq.(119) gives 

 

 
     1 1 1 1 1 1 1

1 1 1

A A LB A LB A LB

LB A

A B A B A B

d a x t b y t c z t
t t

a a b b c c

  

 

     
 

, (121) 

 

while Eq.(120) gives 

 
     1 1 2 1 2 1 2

1 2 1

A A LB A LB A LB

LB A

A B A B A B

d a x t b y t c z t
t t

a a b b c c

  

 

     
 

. (122) 

 

For 2A , using Eqs.(90)–(94) and Eq.(119) gives 

 
     2 1 1 1 1 1 1

1 1 2

A A LB A LB A LB

LB A

A B A B A B

d a x t b y t c z t
t t

a a b b c c

  

 

     
 

, (123) 

while Eq.(120) gives 

 
     2 1 2 1 2 1 2

1 2 2

A A LB A LB A LB

LB A

A B A B A B

d a x t b y t c z t
t t

a a b b c c

  

 

     
 

. (124) 
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     Next, a check is made to determine whether the POIs lie within the axial limits of RCC B. 

This is done by assessing the intersection of RCC B with the planes 1A and 
2A at the lower and 

upper extremities, respectively, of RCC A. The procedure is clarified by the diagrams in Figs.14 

and 15, which show a cross-section of RCC A in plane 1A . The intersection of RCC B with 

plane 1A  can produce a circle, if the axes of RCC A and B are parallel, or an ellipse if the axes 

of RCC A and B are not parallel. The intersecting surface can be contained entirely within RCC 

A, or could be partially enclosed in RCC A. 

 



  

                                                                      44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. RCC B intersecting the base of RCC A for axes A  and B parallel and out of plane 

1A . Upper: complete intersection. Lower: Partial intersection with POIA1T and POIA1B out of RCC 

A.
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Figure 15. RCC B intersecting the base of RCC A for axes A  and B  not parallel and out of 

plane 1A . Upper: complete intersection. Lower: Partial intersection with POIA1T and POIA1B out 

of RCC A.
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     For the case where the axes of RCCs A and B are parallel, determination as to whether 

intersection occurs can be made by comparing the radii of RCCs A and B, AR and BR , and the 

distance ABd from the center of RCC A in plane 1A  to the point of intersection POIA1M at the 

center of RCC B with plane 1A . POIA1M is given by the intersection of the line ( )BL t  parallel to 

B  through the center of RCC B and plane 1A . The parametric equations for the line ( )BL t are 

 

1

1

1

( ) :B B B

B B

B B

L t x x a t

y y b t

z z c t

 

 

 

. (125) 

 

Substitution of these expressions into the equation of plane 1A  given in Eq.(93) and solving for t 

gives 

 
 1 1 1A B A B A B

M

A B A B A B

a x b y c z
t t

a a b b c c

  
 

 
. (126) 

 The distance ABd  is thus  

       2 2 2

1 1 1AB A M A M A Md x x t y y t z z t                 (127) 

  

Intersection of RCCs A and B occurs when  

 AB A Bd R R  . (128) 

 

     Assessment of the intersection when the axes of RCC A and B are not parallel is more 

complicated because the orientation of the ellipse in plane 1A  depends on the orientation of 

RCC B. The assessment is done in two stages. 
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     In Stage 1, checks are made to determine whether either the “top” or “bottom” intersection 

points of RCC B with RCC A plane 1A , 
1A TR POI

 or 
1A BR POI

 , lie inside RCC A. Thus, 

 
1

1

A T A

A B A

R POI R

R POI R








. (129) 

 

If either condition is satisfied, then RCCs A and B intersect. 

 

     If neither condition is satisfied, then a more complicated intersection check is necessary for 

Stage 2. This situation is illustrated in Fig.12 for the case where the intersection of RCC B with 

plane 1A  creates an ellipse that may partially intersect RCC A. Here, an intersection assessment 

can be made by determining the minimal distance between the center of RCC A in plane 1A , 

 1 1 1, ,A A Ax y z , and the ellipse. To do so, the method of Lagrange multipliers (Trench and 

Kolman, 1972) is used to do the analysis. Using this technique, the distance 1ed  between the 

center of RCC A in plane 1A ,  1 1 1, ,A A Ax y z , and the intersection of the cylinder with plane 1A , 

i.e., the ellipse, is minimized. It is convenient to use the distance measure
1
  

 

      
2 2 22

1 1 1 1( , , ) e A A Af x y z d x x y y z z       , (130) 

 

where ( , , )f x y z is termed the objective function. 

 

                                                 
1
 This form simplifies the analysis as compared to using f(x,y,z) = de1. 
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     This distance is minimized subject to two constraints. Constraint 1 is that all values  , ,x y z  

must lie on the surface of the general cylinder given by Eq.(54) and written here as 1( , , )g x y z , 

where 

 

 2 2 2

1( , , ) 0B B B B B B B B B Bg x y z A x B y C z D xy E yz F zx G x H y J z K           .(131) 

 

Constraint 2 requires that all values  , ,x y z  lie on the line designated by the vector 1
ˆ

eL  

originating at the center of RCC A in plane 1A ,  1 1 1, ,A A Ax y z ,  and oriented in the plane 1A . 

Thus, 

      1 1 1 1
ˆˆ ˆ

e A A AL x x i y y j z z k      . (132) 

 

This constraint is needed to ensure that the minimial distance is between calculated in the plane 

1A .
2
  Vector 1

ˆ
eL  must be perpendicular to the normal A  of the plane 1A  so that Constraint 2 

2( , , )g x y z is 

 2 1( , , ) 0eg x y z A L   , (133) 

or 

      2 1 1 1( , , ) 0A A A A A Ag x y z a x x b y y c z z       , (134) 

or 

 2 1( , , ) 0A A A Ag x y z a x b y c z d     . (135) 

 

 

                                                 
2
 Consider RCC A to be a quarter and RCC B to be a toothpick which slightly penetrates the quarter near the outer 

periphery of the quarter. RCC B might be oriented almost parallel to the bottom of the quarter so that the minimum 

distance between the center of the quarter and the toothpick is much less than the distance from the center of the 

quarter to the location of intersection of the quarter and toothpick. 
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     The Lagrange multiplier formulation can be simplified by first solving Eq. (134) for z so that  

 
 1

( , )
A A A

A

d a x b y
z x y

c

    . (136) 

 

The analysis proceeds using bivariate expressions in the independent variables x and y. 

 

     An auxiliary function F is formed using the objective function in Eq.(130), the explicit 

constraint in Eq.(131) and the implicit constraint in Eq.(136), and the Lagrange multiplier so 

that 

      , , ,F x y f x y g x y  . (137) 

 

The conditions to be satisfied are 

 

0

0

F f g

x x x

F f g

y y y





  
  

  

  
  

  

. (138) 

 

Solving the expressions in Eq.(138) yields 

 0
f g f g

x y y x

   
 

   
. (139) 

 

Evaluation of the partial derivatives gives 

 

   

   

1 1

1 1

2 2

2 2

A A

A A

f z
x x z z

x x

f z
y y z z

y y

 
   

 

 
   

 

 (140) 
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x x x x x

g z z z z
B y C D x E z y F x H J

y y y y y

     
        

     

     
        

     

, (141) 

and 

 ,A A

A A

a bz z

x c y c

 
   

 
. (142) 

 

 Inserting the expressions in Eqs.(141) and (142) into Eq.(139) gives 

 2 2 0BL BL BL BL BL BLA x B y D xy G x H y K      (143) 

where (Wolfram, 1991) 
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Equation (130), with Eq.(136), and Eq. (143) constitute two general quadratic equations in the 

unknowns x and y. In general, their simultaneous solution must be obtained using a multivariate 

root-finding algorithm. 

 

     If a POI is determined, then the procedure is terminated. If no POI is located, then the 

foregoing analysis is repeated for the upper end of RCC B, and then for the upper end of RCC A 

and the ends of RCC B. 

 

      

3.5. RCC and SPH 

     The intersection of a cylinder and a sphere requires formulations and evaluation procedure 

that differs from those for the preceding types of intersections. It is necessary to treat three 

primary configurations characterized in terms of the location of the center of the sphere relative 

to the cylinder. Configuration 1 pertains to a sphere that is located such that its center lies 

between the axial extremities of the cylinder as illustrated in Fig. 16. Configurations 2 and 3, to 

be discussed later, consider the sphere when its center is beyond either end of the cylinder. 
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Figure 16.  Collision of cylinder and sphere for Configuration 1. 

     The RCC-SPH PDS is:      

 

1. Determine the vector A  parallel to the axis of RCC A 

2. Calculate the parametric equations of the line parallel to A  through the base of the RCC. 

3. Calculate the vector B  from the center of SPH A orthogonal to A . 

4. Form the parametric equations for the line in the direction B through the center of SPH A. 

5. Use trigonometry to determine the POI. 
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Configuration 1: sphere is inside of axial extremities of cylinder. 

     Referencing Fig. 16, consider a cylinder A with a base located at 1 1 1( , , )A A AP x y z as referenced 

by the vector AP  extending from the origin to 1 1 1( , , )A A Ax y z  The cylinder is oriented in the 

direction of vector A , and has a radius AR  and length cyd with terminal centerpoint located at 

2 2 2( , , )A A AP x y z . The vector A  is given by 

 

 ˆˆ ˆ
A A AA a i b j c k   , (145) 

where 

 

 

2 1

2 1

2 1

A A A

A A A

A A A

a x x

b y y

c z z

 

 

 

. (146) 

 

A fixed point and a fixed direction characterize a line in three dimensions (Tierney, 1974). Thus, 

if the point 1 1 1( , , )A A AP x y z is a point on line L which has the direction of vector A  and 

( , , )P x y z is any point on L, there exists a scalar t such that  

 AP P tA  . (147) 

 

Every vector equation is equivalent to three scalar equations, obtained by equating the 

components of both sides of the equation. Thus, Eq.(147) is equivalent to the three scalar 

equations 

 

1

1

1

A A

A A

A A

x x a t

y y b t

z z c t

 

 

 

. (148) 
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These expressions are known as the parametric equations of L with t serving as the parameter. 

 

     Also consider a sphere B whose center is located at ( , , )B B BP x y z as referenced by the vector 

BP  extending from the origin to ( , , )B B Bx y z . The sphere has a radius BR . 

 

     To develop a cylinder-box PDS, we first construct a vector B extending from the center of the 

sphere through the center of the cylinder with a direction such that B is orthogonal to A . The 

vector B is given as 

 ˆˆ ˆ
B B BB a i b j c k    (149) 

 

Similar to the discussion for A , if the point ( , , )B B BP x y z is a point on line M with the direction of 

vector B  and ( , , )Q x y z is any point on M, there exists a scalar u such that  

 BQ P uB  . (150) 

 

The equation of a line M in the direction B through the point ( , , )B B BP x y z can be written in terms 

of the parameter u as 

 

B B

B B

B B

x x a u

y y b u

z z c u

 

 

 

. (151) 

 

Lines L and M have the point of intersection (POI) at  ( , , )I I IP x y z . The coordinates of this point 

permit us to write the coefficients of B as 

 

B I B

B I B

B I B

a x x

b y y

c z z

 

 

 

. (152) 
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     To determine the POI, it is convenient to develop trigonometric formulations. First, the 

quantity 
1d is defined as the distance between cylinder endpoint 

1 1 1( , , )A A Ax y z and the POI on the 

centerline of the cylinder. Similarly, 
2d is defined as the distance between 

2 2 2( , , )A A Ax y z and the 

POI. The total length of the cylinder can be written in terms of  
1d  and 

2d as 

      
1/2

2 2 2

1 2 2 1 2 1 2 1cy A A A A A Ad d d x x y y z z        
 

. (153) 

 

     Second, the quantity 1hd is defined as the distance between the center of the sphere 

( , , )B B Bx y z and the endpoint 1 1 1( , , )A A Ax y z on the centerline of the cylinder. Similarly, 2hd is 

defined as the distance between ( , , )B B Bx y z  and 2 2 2( , , )A A Ax y z . These distances are given as  

 
     

     

1/2
2 2 2

1 1 1 1

1/2
2 2 2

2 2 2 2

h A B A B A B

h A B A B A B

d x x y y z z

d x x y y z z

      
 

      
 

 (154) 

 

and are thus known values. 

 

     Third, use of the Pythagorean theorem yields the relationships  

 2 2 2

1 1h Id d d  , (155) 

and 

 2 2 2

2 2h Id d d  . (156) 

 

      Fourth, Eqs.(155) and (156) are solved using Eq.(153). Solving Eq.(153) for 2d , substituting 

in Eq.(156), and solving the resulting expression and Eq.(155) simultaneously gives  

 

2 2 2

1 2

1
2

h h cy

cy

d d d
d

d

 
  (157) 

and  
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 2 1cyd d d  . (158) 

 

The value 
1d given by Eq.(157) corresponds to the parameter 

I It t d  , which can be used in 

Eq.(148) to give the POI ( , , )I I Ix y z . 

 

     A determination as to whether the sphere intersects the cylinder can now be made. First, the 

parametric equation of the line M along B  given by Eq.(151) is evaluated using the coefficients 

in Eq.(152). Two values of the parameter u are selected,  

 
1

2

B

B

u R

u R



 
 (159) 

 

so that the closest and furthest distances ( )Bd R and ( )Bd R from the POI to the sphere along M 

are determined as 

 
     

     
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2 2 2

1 1 1 1

1/2
2 2 2
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B B I B I B I B
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d R d x x y y z z

d R d x x y y z z

       
 

        
 

 (160) 

 

The criteria for the sphere intersecting with the cylinder is  
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1

2

2

: sphereintersects cylinder

: spheredoes not intersect cylinder
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: spheredoes not intersect cylinder

B A

B A

B A

B A

d R

d R

d R

d R






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 (161) 
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Configuration 2: sphere lies to “left” axial extremity of cylinder. 

 

     Figure 17 contains an illustration of the geometry for Configuration 2. Here the designation of 

the position of the sphere “beyond” the axial extremity of the cylinder is here in terms of the 

center of the sphere, ( , , )B B BP x y z , and the point on the centerline of the cylinder 

1 1 1( , , )A A AP x y z as indicated in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Collision of cylinder and sphere for Configuration 2. 
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For this configuration, which is illustrated in Fig. 17, the following formulations apply: 

 2 2 2

1 1h Id d d  , (162) 

 2 2 2

2 2h Id d d  . (163) 

      
1/2

2 2 2

2 1 2 1 2 1 2 1cy A A A A A Ad d d x x y y z z        
 

 (164) 

 

The expressions in Eqs.(162) and (163) are identical to those in Eqs.(155) and (156). The 

distance measure in Eq.(164) differs from Eq.(153) because the POI lies beyond the end of the 

cylinder. Thus, 1d is measured between the “left” end of the cylinder and the external POI and, 

while 2d is now greater than cyd . 

 

         Solving Eq.(164) for 2d , substituting in Eq.(163), and solving the resulting expression and 

Eq.(162) simultaneously gives  

 

2 2 2

1 2

1
2

h h cy

cy

d d d
d

d

 
   (165) 

and  

 2 1cyd d d  . (166) 

 

The sign in Eq.(165) is the opposite of the sign in Eq.(157), while Eq.(166) is identical to 

Eq.(158).  The value 1d given by Eq.(165) is used as the parameter I It t d  , which can be used 

in Eq.(148) to give the POI ( , , )I I Ix y z . 
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    Four types of geometry arrangements are assessed to determine whether the cylinder and 

sphere intersect.   These are illustrated in Figs. 18–21, inclusive of the distance and dimension 

quantities needed to determine insection.  

 

Type 1: No intersection – no overlap. 

     Here 2 cyd d and 1 Bd R for all Id . The sphere is centered a distance 1d  from the end of the 

cylinder. The surface of the sphere at radius 
BR  is less than 

1d ; hence, no intersection occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  Collision of cylinder and sphere for Configuration 2, Type 1. 
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Type 2: No intersection – overlap. 

     Here 2 cyd d , I Bd R , and e Bd R . The sphere is centered a distance 1d  from the end of the 

cylinder. The surface of the sphere at radius 
BR  is greater than 

1d . The distance 
ed between the 

end edge of the cylinder and center of the sphere is greater than  
BR ; hence, no intersection 

occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  Collision of cylinder and sphere for Configuration 2, Type 2. 
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Type 3: Side-end intersection.  

     Here 2 cyd d , 1 Bd R , and e Bd R , where 

  
1/2

2 2

1 3e Bd d d   (167) 

 

is the minimum distance between the sphere and the end of the cylinder and 

 3B I Ad d R  . (168) 

 

For these conditions intersection occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 20.  Collision of cylinder and sphere for Configuration 2, Type 2. 
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Type 4: End intersection.  

     Here 2 cyd d , 1 Bd R , and I Bd R . The sphere intersects the cylinder through the surface of 

the plane defining the ends of the cylinder. For these conditions intersection occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 21.  Collision of cylinder and sphere for Configuration 2, Type 4. 
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Configuration 3: sphere lies to “right” axial extremity of cylinder. 

     Figure 22 contains an illustration of the geometry for Configuration 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.  Collision of cylinder and sphere for Configuration 3. 
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For this configuration, the following formulations apply: 

 2 2 2

1 1h Id d d  , (169) 

 2 2 2

2 2h Id d d  . (170) 

      
1/2

2 2 2

1 2 2 1 2 1 2 1cy A A A A A Ad d d x x y y z z        
 

 (171) 

 

The expressions in Eqs.(169) and (170) are identical to those in Eqs.(155) and (156). The 

distance measure in Eq.(171) differs from Eq.(153) and Eq.(164) because the POI lies beyond 

the “right” end of the cylinder. Thus, 2d is measured between the end of the cylinder and the 

external POI and, while 1d is now greater than cyd . 

 

         Solving  Eq.(171) for 2d , substituting in Eq.(170), and solving the resulting expression and 

Eq.(169) simultaneously gives  

 

2 2 2

1 2

1
2

h h cy

cy

d d d
d

d

 
  (172) 

and  

 2 1 cyd d d  . (173) 

 

The sign in Eq.(172) is the opposite of the sign in Eq.(157), while Eq.(173) has the opposite sign 

to Eq.(158).  The value 1d given by Eq.(172) is used as the parameter I It t d  , which can be 

used in Eq.(148) to give the POI ( , , )I I Ix y z . 
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3.6.  SPH and SPH 

       Proximity assessment of two spheres requires the simple calculation of the distance between 

the centers of the spheres in relation to their radii. The procedure is illustrated in Fig. 23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23.  Determination whether POIA1 lies between the ends of RCCs A and B. 

The PDS is  
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4. SUMMARY AND CONCLUSIONS 

 

     The Los Alamos TRX code is being developed as front-end to the MCNP6 Monte Carlo 

radiation-transport code to facilitate model creation and execution using a user-friendly graphical 

user interface. The TRX graphics tool will plot geometry, but should also have the knowledge to 

understand object proximity. This knowledge is necessary for the automated creation of the 

geometry information required by MCNP6. 

 

    Historically, MCNP6 model preparation has required that the user determine object proximity. 

This process has been aided by the MCNP6 geometry plotter, which can be used to inspect 

geometry for flaws. This feature is not appropriate for TRX because it identifies intersections of 

surfaces with each other and the plot plane and draws the resulting curves. Hence, there is no 

information regarding object proximity other than that generated for a designated plot. MCNP6 

geometry can also be assessed using particle transport to detect flaws. Proximity assessment is 

limited specific points, and portions of the geometry may not experience particle transport so that 

all of the geometry may not be assessed.  

 

     We have developed algorithms to provide suitably characterized object proximity assessment 

capability to TRX. We have avoided algorithms that iteratively assess proximity. Moreover, the 

algorithms are also designed to provide a prescription to reposition an object that is determined 

to collide with another object. Thus, the expressions are not developed by simple simultaneous 

solution of the equations for two surfaces. Instead, equations of lines between two surfaces are 

used to provide a characterization of the minimal distance between surfaces. Objects can then be 

separated using a single parameter for the equation of the line. With one exception, the 
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algorithms are deterministic and analytic.  A numerical solution is required for the case of an 

intersecting ellipse and circle. 
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